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ABSTRACT
This article aims to advance the understanding of particle interactions in low retention time flocculators and proposes a new 
flocculation model that appropriately considers the influence of retention time in flocculation processes. This consideration 
is important for units with flocculation time lower than 1 min, as seen in helically coiled tube flocculators (HCTFs), whose 
retention time is significantly lower than conventional flocculation units (about 30 min). With this, it was possible to obtain a 
more adherent model, reducing deviations between results obtained by physical modelling (using HCTFs, 48 tests) and those 
obtained with the proposed model, when compared with results obtained using the flocculation models commonly used for 
this purpose. The decreasing-rising behaviour presented by experimental data for process efficiency versus retention time, not 
verified in the benchmark models, was satisfactorily addressed by the proposed model. Furthermore, maximum and average 
absolute percentage deviations obtained using the model proposed in this study were less than or equal to the results obtained 
with the benchmark models and less for experimental uncertainty (10%). The results obtained indicate that this model can be 
a useful tool to support the rational design of low retention time units, including applications for the water industry and water 
recycling systems.
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INTRODUCTION

Clarification is an important stage in the physical-chemical 
water and wastewater treatment process and has great 
theoretical and practical importance, including applications 
for the water industry and water recycling systems, using 
chemical and/or bioflocculants (Khannous et al., 2011; 
Ugbenyen and Okoh, 2014; Maceda-Veiga et al., 2015; 
Mudhiriza et al., 2015; Agunbiade et al., 2016; Ma et al., 2017; 
Shaikh et al., 2017; Watanabe, 2017). It is fully dependent 
on the interaction between suspended particles present in 
fluids, since this interaction promotes floc formation and 
breakup. Such interactions can primarily occur in three 
ways: perikinetic interaction, orthokinetic interaction and 
interaction by differential sedimentation.

In perikinetic interaction, also known as Brownian 
motion, the irregular motion of particles leads to a collision 
between them. This kind of interaction is relevant only 
when particles have a reduced size (about 1 µm; Bratby et al. 
(1977)). In orthokinetic interaction, an external source of 
energy is necessary to promote particle collisions, commonly 
with size higher than 1 µm. The added energy generates 
velocity gradients in the f low, both in laminar or turbulent 
f low. In interaction by differential sedimentation, discrete 
particles with different features (for instance: porosity, 
density, size and shape) have different sedimentation 
velocities, leading to collisions between particles moving 
with different velocities.

Among these interaction modes, only orthokinetic 
interactions are relevant in flocculation units commonly used 

in the water treatment process (Bratby et al., 1977), in which the 
agitation of liquid mass should be high enough to ensure the 
contact between particles and should be low enough to avoid 
the breakup of existing flocs.

In this context, mathematical models for orthokinetic 
interactions have been proposed in the literature 
(Smoluchowski, 1917; Camp and Stein, 1943; Fair and 
Gemmell, 1964; Hudson, 1965; Harris et al., 1966; Argaman, 
1968; Argaman and Kaufman, 1970; Bratby et al., 1977; 
Libânio et al., 1996; Son and Hsu, 2008; Weber-Shirk and 
Lion, 2010; Moruzzi and Oliveira, 2012; Cottereau et al., 2014; 
Sithebe and Chirwa, 2016). Most of the presented models do 
not appropriately consider the influence of retention time 
in flocculation processes. This assumption is valid only for 
higher retention times, commonly verified in conventional 
flocculation units (with retention times of about 30 min). 
Therefore, this paper aims to propose a new flocculation 
model, adherent to flocculation units with low retention 
times (with retention times of about 1 min), and able to 
appropriately considers the influence of retention time in the 
flocculation process.

Literature review

The first study that presented a mathematical model for 
interactions in laminar flow was by Smoluchowski (1917). In 
his study, Smoluchowski (1917) presented an expression for 
flocculation rate in a particle size distribution bimodal system 
(Eq. 1). The Smoluchowski model can also be used in combination 
with different theories, like fractal theory (Yang et al., 2013).
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Similar to Smoluchowski (1917), Camp and Stein (1943) 
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particle with radius Ri and Rj, replacing the velocity gradient 
(dv/dz) by the root mean square value of unit’s velocity gradient 
(G). The interaction between two particles with different sizes is 
presented in Fig. 1.

Contact between particles with radius Ri and Rj is possible 
if the volume delimited by the sphere collision (represented by a 
dashed circle in Fig. 1-a, with radius Rij) was crossed. Therefore, 
contact between particles with radius Ri and Rj is possible if the 
center of the particle with radius Ri crosses the dashed circle in 
Fig. 1a.

The flow through the fluid sphere in Fig. 1 can be 
determined from the integration of the differential flow, dq, 
in a differential area with thickness dz in the entire sphere, as 
shown in Fig. 1b. Differential flow dq is given by Eq. 2:
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Integrating Eq. 2 along the sphere collision’s surface, the 
flow rate in the sphere is obtained. Considering that (a) the 
number of collisions per unit of time (Hij) between particles 
is given by the product of the flow rate in sphere collision (q) 
and the number of particles per unit of volume (ni and nj), and 
(b) the velocity gradient (dv/dz) term can be replaced by the 
root mean square value of the unit’s velocity gradient (G), the 
orthokinetic interactions rate between discrete particles can be 
obtained – Eq. 3:
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From Eq. 3, it is possible to verify the relation between the 
particle collision rate and the hydrodynamic parameter velocity 
gradient, beyond the relation between particle collision rate 
and particles’ size existing in the fluid mass. 

Another study that developed a flocculation mathematical 
model based on Eq. 1 presented in Smoluchowski (1917) is 
Fair and Gemmell (1964). These authors proposed a model 
to describe the variation of particle number (nk) related to a 
specific size class (k) – Eq. 4. 
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It is important to note that the models presented in Eqs 2, 3 
and 4, do not consider the failure probability in the flocculation 
process (in case of failure flocs are not formed, even if 
collisions between particles occur). Furthermore, these models 
considered that all collisions lead to bigger flocs. There is no 
term to represent floc breakup.

Terms related to floc breakup began to be included in the 
models of Harris et al. (1966), which modified Eq. 4, inserting 
a new term related to floc breakup. Failure probability in the 
flocculation process was considered through the insertion of 
parameter ∝, related to the fraction of collisions that result in 
flocs. The proposed model is presented in Eq. 5:
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However, Hudson (1965) considered a bimodal distribution 
system for particle size, being such a system composed by 
discrete particles and flocs, and assuming that variations in 
elements’ size within each group are small when compared with 
the difference between the size of elements of each group. In 
this system, discrete particles are removed from the liquid mass 
through their collision with flocs. Therefore, Eq. 4 is simplified, 
as shown in Eq. 6:
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In order to include a parameter related to floc breakup 
and retaining the bimodal distribution system concept, 
Argaman (1968) and Argaman and Kaufman (1970) presented 
an orthokinetic flocculation model similar to the model 
presented by Smoluchowski (1917). This model is based on 
the hypothesis that discrete particles in a turbulent flow are 
in random movement like Brownian motion, inherent to 
perikinetic interaction. Another hypothesis assumed in this 
model is the utilization of a bimodal distribution system for 
particle size, similar to the system adopted in Hudson (1965). 
Argaman (1968) and Argaman and Kaufman (1970) confirmed 
the proposed system experimentally through the evaluation of 
floc size.

The model proposed by Argaman (1968) and Argaman and 
Kaufman (1970) considers two different processes to modify 
particle concentration: aggregation of discrete particles and floc 
breakup – Eq. 7:
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(7)Figure 1

Illustration of orthokinetic interactions between two particles: (a) 
velocity gradient and the sphere collision; (b) flow through sphere 

collision. Adapted from Camp and Stein (1943).
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In order to make Eq. 7 viable for practical purposes and 
allow the parameter to be obtained experimentally, three 
considerations were performed: (i) the average size of flocs 
is directly related to mean square velocity fluctuations (RF 
= K2/(u

²)average); (ii) the mean square velocity fluctuations can 
be estimated from root mean square value of unit’s velocity 
gradient ((u²)average = KP.G); and (c) particles and flocs are 
considered spheres – therefore, the fraction of floc volume is 
given by Eq. 8:
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Grouping constants in two classes, the first one being 
related to particle aggregation (KA) and the second related to 
floc breakup (KB), the model expressing the function of KA and 
KB is given by Eq. 9:

   

𝐻𝐻𝑖𝑖𝑖𝑖 = 4
3𝑛𝑛𝑖𝑖𝑛𝑛𝑖𝑖𝑅𝑅𝑖𝑖𝑖𝑖

3 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 

 

𝑑𝑑𝑑𝑑 = 𝑑𝑑 [𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑]𝑑𝑑𝑑𝑑 = 𝑑𝑑 [𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑] 2(𝑅𝑅𝑖𝑖𝑖𝑖
2 − 𝑑𝑑2)

1 2⁄ 𝑑𝑑𝑑𝑑 

 

𝐻𝐻𝑖𝑖𝑖𝑖 = 4
3𝑛𝑛𝑖𝑖𝑛𝑛𝑖𝑖𝑅𝑅𝑖𝑖𝑖𝑖

3𝐺𝐺 

 

𝑑𝑑𝑛𝑛𝑘𝑘
𝑑𝑑𝑑𝑑 = 2

3
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

[
 
 
 

∑ 𝑛𝑛𝑖𝑖𝑛𝑛𝑖𝑖𝑅𝑅𝑖𝑖𝑖𝑖
3 − 2𝑛𝑛𝑘𝑘 ∑𝑛𝑛𝑖𝑖𝑅𝑅𝑖𝑖𝑘𝑘

3
∞

𝑖𝑖=1

𝑘𝑘−1

𝑖𝑖=1
𝑖𝑖=𝑘𝑘−𝑖𝑖 ]

 
 
 
 

 

𝑑𝑑𝑛𝑛1
𝑑𝑑𝑑𝑑 = −∝ 𝑅𝑅𝐹𝐹

3

𝜋𝜋 𝛿𝛿𝛿𝛿𝑛𝑛𝑖𝑖
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 

 

𝑑𝑑𝑛𝑛1
𝑑𝑑𝑑𝑑 = −4

3𝑛𝑛1𝑛𝑛𝐹𝐹𝑅𝑅𝐹𝐹
3 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 

 

𝑛𝑛0
𝑛𝑛1

= 1 + 4𝜋𝜋 ∝ 𝐾𝐾𝑆𝑆𝑅𝑅𝐹𝐹
3𝑛𝑛𝐹𝐹𝑢𝑢2̅̅ ̅𝑇𝑇

1 + 𝐵𝐵𝑅𝑅𝐹𝐹𝑛𝑛𝐹𝐹𝑢𝑢2̅̅ ̅𝑇𝑇
𝑛𝑛0𝑅𝑅1

2
 

 

𝛿𝛿 = 4
3𝜋𝜋𝑛𝑛𝐹𝐹𝑅𝑅𝐹𝐹

3 

 

𝑛𝑛0
𝑛𝑛1

= 1 + 𝐾𝐾𝐴𝐴 𝐺𝐺𝑇𝑇
1 + 𝐾𝐾𝐵𝐵 𝐺𝐺2 𝑇𝑇  

 

𝐾𝐾𝐴𝐴 = 3 ∝ 𝛿𝛿𝐾𝐾𝑆𝑆𝐾𝐾𝑃𝑃 

 

𝐾𝐾𝐵𝐵 = 3
4𝜋𝜋

𝐵𝐵𝛿𝛿
𝑛𝑛0

𝐾𝐾𝑃𝑃
2

𝑅𝑅1
2𝐾𝐾1

 

 

𝑁𝑁0
𝑁𝑁1

= [𝐾𝐾𝐵𝐵
𝐾𝐾𝐴𝐴

𝐺𝐺 + (1 − 𝐾𝐾𝐵𝐵
𝐾𝐾𝐴𝐴

𝐺𝐺) 𝑒𝑒−𝐾𝐾𝐴𝐴𝐺𝐺𝐺𝐺]
−1

 

 (9)

Where KA and KB are given by Eqs 10 and 11:

        

𝐻𝐻𝑖𝑖𝑖𝑖 = 4
3𝑛𝑛𝑖𝑖𝑛𝑛𝑖𝑖𝑅𝑅𝑖𝑖𝑖𝑖

3 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 

 

𝑑𝑑𝑑𝑑 = 𝑑𝑑 [𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑]𝑑𝑑𝑑𝑑 = 𝑑𝑑 [𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑] 2(𝑅𝑅𝑖𝑖𝑖𝑖
2 − 𝑑𝑑2)

1 2⁄ 𝑑𝑑𝑑𝑑 

 

𝐻𝐻𝑖𝑖𝑖𝑖 = 4
3𝑛𝑛𝑖𝑖𝑛𝑛𝑖𝑖𝑅𝑅𝑖𝑖𝑖𝑖

3𝐺𝐺 

 

𝑑𝑑𝑛𝑛𝑘𝑘
𝑑𝑑𝑑𝑑 = 2

3
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

[
 
 
 

∑ 𝑛𝑛𝑖𝑖𝑛𝑛𝑖𝑖𝑅𝑅𝑖𝑖𝑖𝑖
3 − 2𝑛𝑛𝑘𝑘 ∑𝑛𝑛𝑖𝑖𝑅𝑅𝑖𝑖𝑘𝑘

3
∞

𝑖𝑖=1

𝑘𝑘−1

𝑖𝑖=1
𝑖𝑖=𝑘𝑘−𝑖𝑖 ]

 
 
 
 

 

𝑑𝑑𝑛𝑛1
𝑑𝑑𝑑𝑑 = −∝ 𝑅𝑅𝐹𝐹

3

𝜋𝜋 𝛿𝛿𝛿𝛿𝑛𝑛𝑖𝑖
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 

 

𝑑𝑑𝑛𝑛1
𝑑𝑑𝑑𝑑 = −4

3𝑛𝑛1𝑛𝑛𝐹𝐹𝑅𝑅𝐹𝐹
3 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 

 

𝑛𝑛0
𝑛𝑛1

= 1 + 4𝜋𝜋 ∝ 𝐾𝐾𝑆𝑆𝑅𝑅𝐹𝐹
3𝑛𝑛𝐹𝐹𝑢𝑢2̅̅ ̅𝑇𝑇

1 + 𝐵𝐵𝑅𝑅𝐹𝐹𝑛𝑛𝐹𝐹𝑢𝑢2̅̅ ̅𝑇𝑇
𝑛𝑛0𝑅𝑅1

2
 

 

𝛿𝛿 = 4
3𝜋𝜋𝑛𝑛𝐹𝐹𝑅𝑅𝐹𝐹

3 

 

𝑛𝑛0
𝑛𝑛1

= 1 + 𝐾𝐾𝐴𝐴 𝐺𝐺𝑇𝑇
1 + 𝐾𝐾𝐵𝐵 𝐺𝐺2 𝑇𝑇  

 

𝐾𝐾𝐴𝐴 = 3 ∝ 𝛿𝛿𝐾𝐾𝑆𝑆𝐾𝐾𝑃𝑃 

 

𝐾𝐾𝐵𝐵 = 3
4𝜋𝜋

𝐵𝐵𝛿𝛿
𝑛𝑛0

𝐾𝐾𝑃𝑃
2

𝑅𝑅1
2𝐾𝐾1

 

 

𝑁𝑁0
𝑁𝑁1

= [𝐾𝐾𝐵𝐵
𝐾𝐾𝐴𝐴

𝐺𝐺 + (1 − 𝐾𝐾𝐵𝐵
𝐾𝐾𝐴𝐴

𝐺𝐺) 𝑒𝑒−𝐾𝐾𝐴𝐴𝐺𝐺𝐺𝐺]
−1

 

 (10)

  

𝐻𝐻𝑖𝑖𝑖𝑖 = 4
3𝑛𝑛𝑖𝑖𝑛𝑛𝑖𝑖𝑅𝑅𝑖𝑖𝑖𝑖

3 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 

 

𝑑𝑑𝑑𝑑 = 𝑑𝑑 [𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑]𝑑𝑑𝑑𝑑 = 𝑑𝑑 [𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑] 2(𝑅𝑅𝑖𝑖𝑖𝑖
2 − 𝑑𝑑2)

1 2⁄ 𝑑𝑑𝑑𝑑 

 

𝐻𝐻𝑖𝑖𝑖𝑖 = 4
3𝑛𝑛𝑖𝑖𝑛𝑛𝑖𝑖𝑅𝑅𝑖𝑖𝑖𝑖

3𝐺𝐺 

 

𝑑𝑑𝑛𝑛𝑘𝑘
𝑑𝑑𝑑𝑑 = 2

3
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

[
 
 
 

∑ 𝑛𝑛𝑖𝑖𝑛𝑛𝑖𝑖𝑅𝑅𝑖𝑖𝑖𝑖
3 − 2𝑛𝑛𝑘𝑘 ∑𝑛𝑛𝑖𝑖𝑅𝑅𝑖𝑖𝑘𝑘

3
∞

𝑖𝑖=1

𝑘𝑘−1

𝑖𝑖=1
𝑖𝑖=𝑘𝑘−𝑖𝑖 ]

 
 
 
 

 

𝑑𝑑𝑛𝑛1
𝑑𝑑𝑑𝑑 = −∝ 𝑅𝑅𝐹𝐹

3

𝜋𝜋 𝛿𝛿𝛿𝛿𝑛𝑛𝑖𝑖
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 

 

𝑑𝑑𝑛𝑛1
𝑑𝑑𝑑𝑑 = −4

3𝑛𝑛1𝑛𝑛𝐹𝐹𝑅𝑅𝐹𝐹
3 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 

 

𝑛𝑛0
𝑛𝑛1

= 1 + 4𝜋𝜋 ∝ 𝐾𝐾𝑆𝑆𝑅𝑅𝐹𝐹
3𝑛𝑛𝐹𝐹𝑢𝑢2̅̅ ̅𝑇𝑇

1 + 𝐵𝐵𝑅𝑅𝐹𝐹𝑛𝑛𝐹𝐹𝑢𝑢2̅̅ ̅𝑇𝑇
𝑛𝑛0𝑅𝑅1

2
 

 

𝛿𝛿 = 4
3𝜋𝜋𝑛𝑛𝐹𝐹𝑅𝑅𝐹𝐹

3 

 

𝑛𝑛0
𝑛𝑛1

= 1 + 𝐾𝐾𝐴𝐴 𝐺𝐺𝑇𝑇
1 + 𝐾𝐾𝐵𝐵 𝐺𝐺2 𝑇𝑇  

 

𝐾𝐾𝐴𝐴 = 3 ∝ 𝛿𝛿𝐾𝐾𝑆𝑆𝐾𝐾𝑃𝑃 

 

𝐾𝐾𝐵𝐵 = 3
4𝜋𝜋

𝐵𝐵𝛿𝛿
𝑛𝑛0

𝐾𝐾𝑃𝑃
2

𝑅𝑅1
2𝐾𝐾1

 

 

𝑁𝑁0
𝑁𝑁1

= [𝐾𝐾𝐵𝐵
𝐾𝐾𝐴𝐴

𝐺𝐺 + (1 − 𝐾𝐾𝐵𝐵
𝐾𝐾𝐴𝐴

𝐺𝐺) 𝑒𝑒−𝐾𝐾𝐴𝐴𝐺𝐺𝐺𝐺]
−1

 

 (11)

Bratby et al. (1977) proposed a model to describe the 
flocculation process in a static system considering that the 
particle concentration in the liquid mass is proportional to the 
turbidity, i.e., initial and final values of particle concentration 
(n0 and n1, respectively) were replaced by initial and final 
values of turbidity (N0 and N1, respectively). This model was 
based on Argaman (1968) and Argaman and Kaufman (1970)’s 
model (using it integro-differential form instead it original 
discrete form), and is presented in Eq. 12. It is important 
to emphasize that models proposed by Argaman (1968), 
Argaman and Kaufman (1970) and Bratby et al. (1977) were 
experimentally verified by Libânio et al. (1996) and Moruzzi 
and Oliveira (2012).

   

𝐻𝐻𝑖𝑖𝑖𝑖 = 4
3𝑛𝑛𝑖𝑖𝑛𝑛𝑖𝑖𝑅𝑅𝑖𝑖𝑖𝑖

3 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 

 

𝑑𝑑𝑑𝑑 = 𝑑𝑑 [𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑]𝑑𝑑𝑑𝑑 = 𝑑𝑑 [𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑] 2(𝑅𝑅𝑖𝑖𝑖𝑖
2 − 𝑑𝑑2)

1 2⁄ 𝑑𝑑𝑑𝑑 

 

𝐻𝐻𝑖𝑖𝑖𝑖 = 4
3𝑛𝑛𝑖𝑖𝑛𝑛𝑖𝑖𝑅𝑅𝑖𝑖𝑖𝑖

3𝐺𝐺 

 

𝑑𝑑𝑛𝑛𝑘𝑘
𝑑𝑑𝑑𝑑 = 2

3
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

[
 
 
 

∑ 𝑛𝑛𝑖𝑖𝑛𝑛𝑖𝑖𝑅𝑅𝑖𝑖𝑖𝑖
3 − 2𝑛𝑛𝑘𝑘 ∑𝑛𝑛𝑖𝑖𝑅𝑅𝑖𝑖𝑘𝑘

3
∞

𝑖𝑖=1

𝑘𝑘−1

𝑖𝑖=1
𝑖𝑖=𝑘𝑘−𝑖𝑖 ]

 
 
 
 

 

𝑑𝑑𝑛𝑛1
𝑑𝑑𝑑𝑑 = −∝ 𝑅𝑅𝐹𝐹

3

𝜋𝜋 𝛿𝛿𝛿𝛿𝑛𝑛𝑖𝑖
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 

 

𝑑𝑑𝑛𝑛1
𝑑𝑑𝑑𝑑 = −4

3𝑛𝑛1𝑛𝑛𝐹𝐹𝑅𝑅𝐹𝐹
3 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 

 

𝑛𝑛0
𝑛𝑛1

= 1 + 4𝜋𝜋 ∝ 𝐾𝐾𝑆𝑆𝑅𝑅𝐹𝐹
3𝑛𝑛𝐹𝐹𝑢𝑢2̅̅ ̅𝑇𝑇

1 + 𝐵𝐵𝑅𝑅𝐹𝐹𝑛𝑛𝐹𝐹𝑢𝑢2̅̅ ̅𝑇𝑇
𝑛𝑛0𝑅𝑅1

2
 

 

𝛿𝛿 = 4
3𝜋𝜋𝑛𝑛𝐹𝐹𝑅𝑅𝐹𝐹

3 

 

𝑛𝑛0
𝑛𝑛1

= 1 + 𝐾𝐾𝐴𝐴 𝐺𝐺𝑇𝑇
1 + 𝐾𝐾𝐵𝐵 𝐺𝐺2 𝑇𝑇  

 

𝐾𝐾𝐴𝐴 = 3 ∝ 𝛿𝛿𝐾𝐾𝑆𝑆𝐾𝐾𝑃𝑃 

 

𝐾𝐾𝐵𝐵 = 3
4𝜋𝜋

𝐵𝐵𝛿𝛿
𝑛𝑛0

𝐾𝐾𝑃𝑃
2

𝑅𝑅1
2𝐾𝐾1

 

 

𝑁𝑁0
𝑁𝑁1

= [𝐾𝐾𝐵𝐵
𝐾𝐾𝐴𝐴

𝐺𝐺 + (1 − 𝐾𝐾𝐵𝐵
𝐾𝐾𝐴𝐴

𝐺𝐺) 𝑒𝑒−𝐾𝐾𝐴𝐴𝐺𝐺𝐺𝐺]
−1

  (12)

Alternatively:

   

 

𝑁𝑁1
𝑁𝑁0
= 𝐾𝐾𝐵𝐵𝐾𝐾𝐴𝐴

𝐺𝐺 + (1 − 𝐾𝐾𝐵𝐵𝐾𝐾𝐴𝐴
𝐺𝐺) 𝑒𝑒−𝐾𝐾𝐴𝐴𝐺𝐺𝐺𝐺 

 

𝐺𝐺 = √
𝜑𝜑𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀
𝜇𝜇 = √

𝑔𝑔. ℎ𝑓𝑓
𝜈𝜈. 𝑇𝑇  

 

𝑛𝑛0
𝑛𝑛1
=
(1 + 𝐾𝐾𝐴𝐴𝐺𝐺𝑇𝑇)
(1 + 𝐾𝐾𝐵𝐵𝐺𝐺2𝑇𝑇)

 

 

𝑁𝑁0
𝑁𝑁1
=
(1 + 𝐾𝐾𝐴𝐴𝐺𝐺𝑇𝑇)
(1 + 𝐾𝐾𝐵𝐵𝐺𝐺2𝑇𝑇)

 

 

𝑁𝑁1
𝑁𝑁0
=
(1 + 𝐾𝐾𝐵𝐵𝐺𝐺2𝑇𝑇)
(1 + 𝐾𝐾𝐴𝐴𝐺𝐺𝑇𝑇)

 

 

𝑑𝑑𝑁𝑁1
𝑑𝑑𝑇𝑇 = −𝐾𝐾𝐴𝐴𝐺𝐺𝑁𝑁1⏟    

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑀𝑀𝐴𝐴𝑀𝑀𝐴𝐴𝐴𝐴𝐴𝐴𝑀𝑀 𝐺𝐺𝑀𝑀𝐴𝐴𝑇𝑇
+ 𝐾𝐾𝐵𝐵𝑁𝑁0𝐺𝐺2⏟    
𝐵𝐵𝐴𝐴𝑀𝑀𝑀𝑀𝐵𝐵𝐵𝐵𝐵𝐵 𝐺𝐺𝑀𝑀𝐴𝐴𝑇𝑇

 

 

𝑑𝑑𝑁𝑁1
𝑑𝑑𝑇𝑇 = −𝐾𝐾𝐴𝐴𝐺𝐺𝑇𝑇⏟    

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑀𝑀𝐴𝐴𝑀𝑀𝐴𝐴𝐴𝐴𝐴𝐴𝑀𝑀 𝐺𝐺𝑀𝑀𝐴𝐴𝑇𝑇
+ 𝐾𝐾𝐵𝐵𝑁𝑁0𝐺𝐺2⏟    
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In addition to the models previously mentioned, there 
are flocculation models in the literature based on fractal 
dimensions, among other parameters (Son and Hsu, 2008; 
Weber-Shirk and Lion, 2010; Cottereau et al., 2014; Sithebe 
Nomcebo and Nkhalambayausi Chirwa Evans, 2016). These 
models are considered more complex due to their high 
number of parameters and/or the great effort necessary to 
obtain them. Although such models have great importance in 
flocculation studies, they will not be detailed in this work. In 
this study, only global parameters of the process will be used 
(G, T, N0 and N1).

It is important to emphasize that, in all presented models, 
the influence of retention time in the flocculation process was 
not appropriately considered when the retention time is small. 
For example, Oliveira and Teixeira (2017), in their experimental 

work, present 7 flocculation units with retention times lower 
than 12 s, and with high efficiency. In this context, this paper 
proposes a flocculation model that appropriately considers the 
influence of retention time in the flocculation process to obtain 
a more adherent model when applied to low retention time 
units.

Among several flocculation units with low retention time, 
the helically coiled tube flocculators (HCTFs) have been gaining 
prominence in scientific research (Gregory, 1981; Grohmann 
et al., 1981; Vigneswaran and Setiadi, 1986; Al-Hashimi and 
Ashjyan, 1989; Elmaleh and Jabbouri, 1991; Thiruvenkatachari 
et al., 2002; Carissimi and Rubio, 2005; Silveira et al., 2009; 
Vaezi et al., 2011; Sartori et al., 2015; Oliveira and Teixeira, 
2017a, b). Retention times verified in HCTFs are considerably 
lower than retention times verified in conventional flocculation 
units (such as baffled flocculation units). For example, 
Grohmann et al. (1981) presented a flocculation unit that 
promotes the formation of micro-flocs with a retention time 
equal to 14 s (about 0.78% of the retention time in a conventional 
unit) and reduced the final turbidity to 5% of the initial turbidity 
after 30 s (about 1.67% of the retention time in a conventional 
unit). HCTFs use hydraulic energy of the liquid helical flow to 
disperse flocculation reagents and promote collisions between 
particles to form flocs. These aspects provide a compact, and 
low-cost flocculation unit with high efficiency. Based on these 
characteristics, HCTFs will be used in this study as a proof 
flocculation unit to calibrate/validate the proposed model.

MATERIALS AND METHODS

This section describes the experimental apparatus applied to 
all configurations to obtain values of initial turbidity (N0), 
final turbidity (N1) and root mean square of the unit’s velocity 
gradient (G), used in model calibration (as described in Results 
and Discussion section). This section is divided into 3 parts: 
first, reactor set-up is detailed. After that, the experimental 
modelling apparatus and procedures are shown and described. 
Finally, the main flocculation parameters used in this research 
are presented.

Reactor set-up

24 HCTFs configurations were tested and their characteristics 
are described in Table 1, where d is the tube diameter, D is 
the curvature diameter, p is the distance between consecutive 
passes divided by 2π and L is the HCTF length.

All HCTFs were tested under 2 different flow rates: HCTFs 
from No. 1 to No. 16 were tested under 1 and 2 L/min, and 
HCTFs from No. 17 to No. 24 were tested under 2 and 4 L/min, 
totalling 48 configurations. The set of HCTFs with the same 
values of d, D and p belong to the same arrangement. Variation 
of HCTF length was performed to vary retention time. 
Therefore, HCTFs from No. 1 to No. 8 belong to Arrangement 
I, HCTFs from No. 9 to No. 16 belong to Arrangement II and 
HCTFs from No. 17 to No. 24 belong to Arrangement III. All 
configurations were based on the experimental apparatus of 
Oliveira and Teixeira (2017).

Experimental modelling apparatus and procedures

The experimental apparatus used in this research is shown in 
Fig. 2, based on a complete cycle of the clarification system. 
It is composed of: a reservoir of synthetic water, a flow meter 
(flow controllers), dosing pumps of chemical reagents, pressure 
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gauge connected at flocculator’s input and output sections, 
flocculator, decanter system (settling tank) and drain to the 
final disposal of the fluid used in the search.

Initially, water is pumped and mixed with clay (bentonite), 
resulting in a synthetic water. Synthetic water was prepared 
in a controlled area to ensure that its main characteristics 
(turbidity, pH and temperature) were kept constant in all 
tests. A mixer operates continuously to ensure uniformity 
in synthetic water characteristics, with pH and temperature 
values approximately equal to 6.0 and 22°C, respectively. 
At the end of mixing, the effluent had an average turbidity 
of 50 UT, considered as initial turbidity value in all tests. 
After that, the flow rate was measured by a flow meter, the 
coagulant (aluminium sulphate, to cause destabilization of the 
particles, with a concentration of 43.85% and absolute density 
of 1.31 g/cm³) and the alkalizing agent (sodium hydroxide, 
for pH adjustment) are added by the dosing pumps located 
upstream of the flocculator. The aluminium sulphate dosing 
pump was a LMI Milton Roy P153-398Ti and the sodium 
hydroxide dosing pump was LMI Milton Roy P123-358Ti. 
Aluminium sulphate and sodium hydroxide concentrations 
were obtained through a coagulation diagram considering 
a turbidity removal efficiency equal to 80%, resulting in a 
concentration values equal to 40 mg/L of aluminium sulphate 
solution and 50 mg/L of sodium hydroxide. After the addition 
of these chemicals, the fluid passes through the flocculator 
(where manometers were used to measure head loss in all 
tests) and goes to the settling tank, where sample collection is 
made to determine the final turbidity. The final disposal of the 
fluid is made at the end drain. The experimental uncertainty 

based on instrumental uncertainty was 10%. Particle size 
and concentration are reduced enough to guarantee that they 
can follow streamlines in the unit. HCTF (Fig. 3) consists 
of a transparent and flexible polyvinyl chloride hose (PVC 
hose), coiled in a rigid PVC pipe. The hose used has a smooth 
internal surface with synthetic yarn reinforcement with 
high tenacity to ensure that there are no changes in the cross 
section along the reactor.

To ensure that the geometric and hydraulic features of the 
decanter do not influence the final turbidity removal efficiency 
of the process, a single decanter (with the same flow rate) was 
used in all experiments, keeping the sedimentation velocity 
constant, and uniformly influencing the clarification process. 
For this, the decanter was projected based on geometric and 
hydraulic parameters of a standard unit, with average values 
of reactor diameter, reactor length, and flow rate. The decanter 
design was based on retention time, flow velocity and input/
output devices, following the methodology described by 
Edzwald (2011). The material used for the outside walls was 
polystyrene and the baffles were built with plastic sheets of 1.5 
mm thickness. Figure 4 shows the schematic settling tank and 
Table 2 shows its main geometrical characteristics.

TABle 1
Geometric characteristics of 24 HCTF configurations

Arrangement I Arrangement II Arrangement III

HCTF d (m) D (m) p (m) L (m) HCTF d (m) D (m) p (m) L (m) HCTF d (m) D (m) p (m) L (m)

1 0.0095 0.1135 0.0022 2.63 9 0.0127 0.1167 0.0027 2.96 17 0.0159 0.1199 0.0032 1.89
2 0.0095 0.1135 0.0022 5.26 10 0.0127 0.1167 0.0027 5.92 18 0.0159 0.1199 0.0032 3.79
3 0.0095 0.1135 0.0022 10.53 11 0.0127 0.1167 0.0027 8.88 19 0.0159 0.1199 0.0032 5.68
4 0.0095 0.1135 0.0022 15.8 12 0.0127 0.1167 0.0027 11.84 20 0.0159 0.1199 0.0032 7.58
5 0.0095 0.1135 0.0022 21.07 13 0.0127 0.1167 0.0027 14.8 21 0.0159 0.1199 0.0032 9.47
6 0.0095 0.1135 0.0022 26.31 14 0.0127 0.1167 0.0027 17.76 22 0.0159 0.1199 0.0032 11.37
7 0.0095 0.1135 0.0022 31.58 15 0.0127 0.1167 0.0027 20.72 23 0.0159 0.1199 0.0032 13.26
8 0.0095 0.1135 0.0022 36.84 16 0.0127 0.1167 0.0027 23.68 24 0.0159 0.1199 0.0032 15.16

Figure 2
Schematic hydraulic circuit

Figure 3
Schematic illustration of a helically coiled tube flocculator (HCTF)

Figure 4
Schematic settling tank
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The flow rate inside the decanter was kept constant and 
equal to 0.3 L/min in all tests, to ensure that the decanter’s 
characteristics do not influence the HCTFs’ results. Due to this 
aspect, a system of fluid disposal connected to a rotameter was 
used, allowing for flow rate control. Samples were collected 
after a time equal to 3 times the decanter retention time, 
to ensure that the flow in the unit was in a steady state. The 
average sedimentation velocity used in all tests was 0.21 cm/s, 
according to Edzwald (2011).

Main flocculation parameters

The initial and final values of turbidity were obtained through a 
Hach model 2100 P turbidimeter, with resolution equal to 0.01 
NTU and accuracy of ± 2%. Turbidity values were measured 
immediately after the sampling, avoiding changes in the fluid 
characteristics. In this work, a synthetic water was produced 
in a controlled environment with controlled characteristics (as 
described previously), making the use of a turbidity parameter 
sufficient for the analysis. It is important to emphasize that the 
isolated use of a turbidity parameter is not recommended in the 
analysis of natural water, since other parameters are necessary 
to characterize the process.

G values were obtained from Eq. 14, presented in Camp 
(1955), where G is given as a function of kinematic viscosity of 
the fluid (ν), head loss (hf) and retention time (T).
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Retention time was obtained through the ratio of HCTF 
volume to the flow rate.

RESULTS AND DISCUSSION

This section is divided into three parts: first, the mathematical 
aspects of the proposed model are detailed. After that, the 
model’s coefficient calculation method is described (model 
calibration aspects). Finally, numerical results obtained with 
the proposed model are presented and a comparison with other 
commonly used models is performed.

Mathematical modelling aspects

The flocculation model proposed by Argaman (1968) and 
Argaman and Kaufman (1970) is presented again in Eq. 15, 
as a function of aggregation and breakup coefficients (KA and 

KB, respectively), the root mean square of the unit’s velocity 
gradient (G) and retention time (T).
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Considering that the concentration of primary particles 
is proportional to turbidity, as seen in Bratby et al. (1977), 
initial and final values of particle concentration (n0 and n1, 
respectively) can be replaced by initial and final values of 
turbidity (N0 and N1, respectively) – Eq. 16:
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𝑑𝑑𝑁𝑁1
𝑑𝑑𝑇𝑇 = −𝐾𝐾𝐴𝐴𝐺𝐺𝑇𝑇⏟    

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑀𝑀𝐴𝐴𝑀𝑀𝐴𝐴𝐴𝐴𝐴𝐴𝑀𝑀 𝐺𝐺𝑀𝑀𝐴𝐴𝑇𝑇
+ 𝐾𝐾𝐵𝐵𝑁𝑁0𝐺𝐺2⏟    
𝐵𝐵𝐴𝐴𝑀𝑀𝑀𝑀𝐵𝐵𝐵𝐵𝐵𝐵 𝐺𝐺𝑀𝑀𝐴𝐴𝑇𝑇

 

 

𝑁𝑁1 − 𝑁𝑁0
𝑇𝑇 = −𝐾𝐾𝐴𝐴𝐺𝐺𝑇𝑇 + 𝐾𝐾𝐵𝐵𝑁𝑁0𝐺𝐺2 

𝑁𝑁1 − 𝑁𝑁0 = −𝐾𝐾𝐴𝐴𝐺𝐺𝑇𝑇2 + 𝐾𝐾𝐵𝐵𝑁𝑁0𝑇𝑇𝐺𝐺2 

 

𝑁𝑁1
𝑁𝑁0
− 1 = −𝐾𝐾𝐴𝐴𝐺𝐺𝑁𝑁0

𝑇𝑇2 + 𝐾𝐾𝐵𝐵𝑇𝑇𝐺𝐺2 

 

𝑁𝑁1
𝑁𝑁0
= −𝐾𝐾𝐴𝐴𝐺𝐺𝑁𝑁0

𝑇𝑇2 + 𝐾𝐾𝐵𝐵𝐺𝐺2𝑇𝑇 + 1 

 

 

 

 (16)

Alternatively:

  

 

𝑁𝑁1
𝑁𝑁0
= 𝐾𝐾𝐵𝐵𝐾𝐾𝐴𝐴

𝐺𝐺 + (1 − 𝐾𝐾𝐵𝐵𝐾𝐾𝐴𝐴
𝐺𝐺) 𝑒𝑒−𝐾𝐾𝐴𝐴𝐺𝐺𝐺𝐺 

 

𝐺𝐺 = √
𝜑𝜑𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀
𝜇𝜇 = √

𝑔𝑔. ℎ𝑓𝑓
𝜈𝜈. 𝑇𝑇  

 

𝑛𝑛0
𝑛𝑛1
=
(1 + 𝐾𝐾𝐴𝐴𝐺𝐺𝑇𝑇)
(1 + 𝐾𝐾𝐵𝐵𝐺𝐺2𝑇𝑇)

 

 

𝑁𝑁0
𝑁𝑁1
=
(1 + 𝐾𝐾𝐴𝐴𝐺𝐺𝑇𝑇)
(1 + 𝐾𝐾𝐵𝐵𝐺𝐺2𝑇𝑇)

 

 

𝑁𝑁1
𝑁𝑁0
=
(1 + 𝐾𝐾𝐵𝐵𝐺𝐺2𝑇𝑇)
(1 + 𝐾𝐾𝐴𝐴𝐺𝐺𝑇𝑇)

 

 

𝑑𝑑𝑁𝑁1
𝑑𝑑𝑇𝑇 = −𝐾𝐾𝐴𝐴𝐺𝐺𝑁𝑁1⏟    

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑀𝑀𝐴𝐴𝑀𝑀𝐴𝐴𝐴𝐴𝐴𝐴𝑀𝑀 𝐺𝐺𝑀𝑀𝐴𝐴𝑇𝑇
+ 𝐾𝐾𝐵𝐵𝑁𝑁0𝐺𝐺2⏟    
𝐵𝐵𝐴𝐴𝑀𝑀𝑀𝑀𝐵𝐵𝐵𝐵𝐵𝐵 𝐺𝐺𝑀𝑀𝐴𝐴𝑇𝑇

 

 

𝑑𝑑𝑁𝑁1
𝑑𝑑𝑇𝑇 = −𝐾𝐾𝐴𝐴𝐺𝐺𝑇𝑇⏟    

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑀𝑀𝐴𝐴𝑀𝑀𝐴𝐴𝐴𝐴𝐴𝐴𝑀𝑀 𝐺𝐺𝑀𝑀𝐴𝐴𝑇𝑇
+ 𝐾𝐾𝐵𝐵𝑁𝑁0𝐺𝐺2⏟    
𝐵𝐵𝐴𝐴𝑀𝑀𝑀𝑀𝐵𝐵𝐵𝐵𝐵𝐵 𝐺𝐺𝑀𝑀𝐴𝐴𝑇𝑇

 

 

𝑁𝑁1 − 𝑁𝑁0
𝑇𝑇 = −𝐾𝐾𝐴𝐴𝐺𝐺𝑇𝑇 + 𝐾𝐾𝐵𝐵𝑁𝑁0𝐺𝐺2 

𝑁𝑁1 − 𝑁𝑁0 = −𝐾𝐾𝐴𝐴𝐺𝐺𝑇𝑇2 + 𝐾𝐾𝐵𝐵𝑁𝑁0𝑇𝑇𝐺𝐺2 

 

𝑁𝑁1
𝑁𝑁0
− 1 = −𝐾𝐾𝐴𝐴𝐺𝐺𝑁𝑁0

𝑇𝑇2 + 𝐾𝐾𝐵𝐵𝑇𝑇𝐺𝐺2 

 

𝑁𝑁1
𝑁𝑁0
= −𝐾𝐾𝐴𝐴𝐺𝐺𝑁𝑁0

𝑇𝑇2 + 𝐾𝐾𝐵𝐵𝐺𝐺2𝑇𝑇 + 1 

 

 

 

 (17)

In order to estimate particle variation in the liquid mass 
(dn1/dT, alternatively, dN1/dT) during the flocculation process, 
Bratby et al. (1977) reorganized the differential equation of 
Argaman (1968) and Argaman and Kaufman’s (1970) model, 
presenting one term related to the aggregation process and one 
term related to the break-up process, as shown in Eq. 18.

  

 

𝑁𝑁1
𝑁𝑁0
= 𝐾𝐾𝐵𝐵𝐾𝐾𝐴𝐴

𝐺𝐺 + (1 − 𝐾𝐾𝐵𝐵𝐾𝐾𝐴𝐴
𝐺𝐺) 𝑒𝑒−𝐾𝐾𝐴𝐴𝐺𝐺𝐺𝐺 

 

𝐺𝐺 = √
𝜑𝜑𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀
𝜇𝜇 = √

𝑔𝑔. ℎ𝑓𝑓
𝜈𝜈. 𝑇𝑇  

 

𝑛𝑛0
𝑛𝑛1
=
(1 + 𝐾𝐾𝐴𝐴𝐺𝐺𝑇𝑇)
(1 + 𝐾𝐾𝐵𝐵𝐺𝐺2𝑇𝑇)

 

 

𝑁𝑁0
𝑁𝑁1
=
(1 + 𝐾𝐾𝐴𝐴𝐺𝐺𝑇𝑇)
(1 + 𝐾𝐾𝐵𝐵𝐺𝐺2𝑇𝑇)

 

 

𝑁𝑁1
𝑁𝑁0
=
(1 + 𝐾𝐾𝐵𝐵𝐺𝐺2𝑇𝑇)
(1 + 𝐾𝐾𝐴𝐴𝐺𝐺𝑇𝑇)

 

 

𝑑𝑑𝑁𝑁1
𝑑𝑑𝑇𝑇 = −𝐾𝐾𝐴𝐴𝐺𝐺𝑁𝑁1⏟    

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑀𝑀𝐴𝐴𝑀𝑀𝐴𝐴𝐴𝐴𝐴𝐴𝑀𝑀 𝐺𝐺𝑀𝑀𝐴𝐴𝑇𝑇
+ 𝐾𝐾𝐵𝐵𝑁𝑁0𝐺𝐺2⏟    
𝐵𝐵𝐴𝐴𝑀𝑀𝑀𝑀𝐵𝐵𝐵𝐵𝐵𝐵 𝐺𝐺𝑀𝑀𝐴𝐴𝑇𝑇

 

 

𝑑𝑑𝑁𝑁1
𝑑𝑑𝑇𝑇 = −𝐾𝐾𝐴𝐴𝐺𝐺𝑇𝑇⏟    

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑀𝑀𝐴𝐴𝑀𝑀𝐴𝐴𝐴𝐴𝐴𝐴𝑀𝑀 𝐺𝐺𝑀𝑀𝐴𝐴𝑇𝑇
+ 𝐾𝐾𝐵𝐵𝑁𝑁0𝐺𝐺2⏟    
𝐵𝐵𝐴𝐴𝑀𝑀𝑀𝑀𝐵𝐵𝐵𝐵𝐵𝐵 𝐺𝐺𝑀𝑀𝐴𝐴𝑇𝑇

 

 

𝑁𝑁1 − 𝑁𝑁0
𝑇𝑇 = −𝐾𝐾𝐴𝐴𝐺𝐺𝑇𝑇 + 𝐾𝐾𝐵𝐵𝑁𝑁0𝐺𝐺2 

𝑁𝑁1 − 𝑁𝑁0 = −𝐾𝐾𝐴𝐴𝐺𝐺𝑇𝑇2 + 𝐾𝐾𝐵𝐵𝑁𝑁0𝑇𝑇𝐺𝐺2 

 

𝑁𝑁1
𝑁𝑁0
− 1 = −𝐾𝐾𝐴𝐴𝐺𝐺𝑁𝑁0

𝑇𝑇2 + 𝐾𝐾𝐵𝐵𝑇𝑇𝐺𝐺2 

 

𝑁𝑁1
𝑁𝑁0
= −𝐾𝐾𝐴𝐴𝐺𝐺𝑁𝑁0

𝑇𝑇2 + 𝐾𝐾𝐵𝐵𝐺𝐺2𝑇𝑇 + 1 

 

 

 

 
(18)

An accurate analysis performed in Eq. 18, especially in the 
aggregation term, allows us to verify that this term depends on 
the number of flocs existing in the flocculation unit at time T 
(N1), representing the collision between a discrete particle and a 
floc. However, in flocculation units with lower retention times, 
the flocculation process is more sensitive to the time (T) than 
to the number of flocs previously existing in the flocculation 
unit (N1). Therefore, the model presented in Eq. 18 should be 
adjusted to Eq. 19:

  

 

𝑁𝑁1
𝑁𝑁0
= 𝐾𝐾𝐵𝐵𝐾𝐾𝐴𝐴

𝐺𝐺 + (1 − 𝐾𝐾𝐵𝐵𝐾𝐾𝐴𝐴
𝐺𝐺) 𝑒𝑒−𝐾𝐾𝐴𝐴𝐺𝐺𝐺𝐺 

 

𝐺𝐺 = √
𝜑𝜑𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀
𝜇𝜇 = √

𝑔𝑔. ℎ𝑓𝑓
𝜈𝜈. 𝑇𝑇  

 

𝑛𝑛0
𝑛𝑛1
=
(1 + 𝐾𝐾𝐴𝐴𝐺𝐺𝑇𝑇)
(1 + 𝐾𝐾𝐵𝐵𝐺𝐺2𝑇𝑇)

 

 

𝑁𝑁0
𝑁𝑁1
=
(1 + 𝐾𝐾𝐴𝐴𝐺𝐺𝑇𝑇)
(1 + 𝐾𝐾𝐵𝐵𝐺𝐺2𝑇𝑇)

 

 

𝑁𝑁1
𝑁𝑁0
=
(1 + 𝐾𝐾𝐵𝐵𝐺𝐺2𝑇𝑇)
(1 + 𝐾𝐾𝐴𝐴𝐺𝐺𝑇𝑇)

 

 

𝑑𝑑𝑁𝑁1
𝑑𝑑𝑇𝑇 = −𝐾𝐾𝐴𝐴𝐺𝐺𝑁𝑁1⏟    

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑀𝑀𝐴𝐴𝑀𝑀𝐴𝐴𝐴𝐴𝐴𝐴𝑀𝑀 𝐺𝐺𝑀𝑀𝐴𝐴𝑇𝑇
+ 𝐾𝐾𝐵𝐵𝑁𝑁0𝐺𝐺2⏟    
𝐵𝐵𝐴𝐴𝑀𝑀𝑀𝑀𝐵𝐵𝐵𝐵𝐵𝐵 𝐺𝐺𝑀𝑀𝐴𝐴𝑇𝑇

 

 

𝑑𝑑𝑁𝑁1
𝑑𝑑𝑇𝑇 = −𝐾𝐾𝐴𝐴𝐺𝐺𝑇𝑇⏟    

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑀𝑀𝐴𝐴𝑀𝑀𝐴𝐴𝐴𝐴𝐴𝐴𝑀𝑀 𝐺𝐺𝑀𝑀𝐴𝐴𝑇𝑇
+ 𝐾𝐾𝐵𝐵𝑁𝑁0𝐺𝐺2⏟    
𝐵𝐵𝐴𝐴𝑀𝑀𝑀𝑀𝐵𝐵𝐵𝐵𝐵𝐵 𝐺𝐺𝑀𝑀𝐴𝐴𝑇𝑇

 

 

𝑁𝑁1 − 𝑁𝑁0
𝑇𝑇 = −𝐾𝐾𝐴𝐴𝐺𝐺𝑇𝑇 + 𝐾𝐾𝐵𝐵𝑁𝑁0𝐺𝐺2 

𝑁𝑁1 − 𝑁𝑁0 = −𝐾𝐾𝐴𝐴𝐺𝐺𝑇𝑇2 + 𝐾𝐾𝐵𝐵𝑁𝑁0𝑇𝑇𝐺𝐺2 

 

𝑁𝑁1
𝑁𝑁0
− 1 = −𝐾𝐾𝐴𝐴𝐺𝐺𝑁𝑁0

𝑇𝑇2 + 𝐾𝐾𝐵𝐵𝑇𝑇𝐺𝐺2 

 

𝑁𝑁1
𝑁𝑁0
= −𝐾𝐾𝐴𝐴𝐺𝐺𝑁𝑁0

𝑇𝑇2 + 𝐾𝐾𝐵𝐵𝐺𝐺2𝑇𝑇 + 1 

 

 

 

 (19)

The necessary development is presented below, and the 
resulting flocculation model is presented in Eq. 20.

 

 

𝑁𝑁1
𝑁𝑁0
= 𝐾𝐾𝐵𝐵𝐾𝐾𝐴𝐴

𝐺𝐺 + (1 − 𝐾𝐾𝐵𝐵𝐾𝐾𝐴𝐴
𝐺𝐺) 𝑒𝑒−𝐾𝐾𝐴𝐴𝐺𝐺𝐺𝐺 

 

𝐺𝐺 = √
𝜑𝜑𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀
𝜇𝜇 = √

𝑔𝑔. ℎ𝑓𝑓
𝜈𝜈. 𝑇𝑇  

 

𝑛𝑛0
𝑛𝑛1
=
(1 + 𝐾𝐾𝐴𝐴𝐺𝐺𝑇𝑇)
(1 + 𝐾𝐾𝐵𝐵𝐺𝐺2𝑇𝑇)

 

 

𝑁𝑁0
𝑁𝑁1
=
(1 + 𝐾𝐾𝐴𝐴𝐺𝐺𝑇𝑇)
(1 + 𝐾𝐾𝐵𝐵𝐺𝐺2𝑇𝑇)

 

 

𝑁𝑁1
𝑁𝑁0
=
(1 + 𝐾𝐾𝐵𝐵𝐺𝐺2𝑇𝑇)
(1 + 𝐾𝐾𝐴𝐴𝐺𝐺𝑇𝑇)

 

 

𝑑𝑑𝑁𝑁1
𝑑𝑑𝑇𝑇 = −𝐾𝐾𝐴𝐴𝐺𝐺𝑁𝑁1⏟    

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑀𝑀𝐴𝐴𝑀𝑀𝐴𝐴𝐴𝐴𝐴𝐴𝑀𝑀 𝐺𝐺𝑀𝑀𝐴𝐴𝑇𝑇
+ 𝐾𝐾𝐵𝐵𝑁𝑁0𝐺𝐺2⏟    
𝐵𝐵𝐴𝐴𝑀𝑀𝑀𝑀𝐵𝐵𝐵𝐵𝐵𝐵 𝐺𝐺𝑀𝑀𝐴𝐴𝑇𝑇

 

 

𝑑𝑑𝑁𝑁1
𝑑𝑑𝑇𝑇 = −𝐾𝐾𝐴𝐴𝐺𝐺𝑇𝑇⏟    

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑀𝑀𝐴𝐴𝑀𝑀𝐴𝐴𝐴𝐴𝐴𝐴𝑀𝑀 𝐺𝐺𝑀𝑀𝐴𝐴𝑇𝑇
+ 𝐾𝐾𝐵𝐵𝑁𝑁0𝐺𝐺2⏟    
𝐵𝐵𝐴𝐴𝑀𝑀𝑀𝑀𝐵𝐵𝐵𝐵𝐵𝐵 𝐺𝐺𝑀𝑀𝐴𝐴𝑇𝑇

 

 

𝑁𝑁1 − 𝑁𝑁0
𝑇𝑇 = −𝐾𝐾𝐴𝐴𝐺𝐺𝑇𝑇 + 𝐾𝐾𝐵𝐵𝑁𝑁0𝐺𝐺2 

𝑁𝑁1 − 𝑁𝑁0 = −𝐾𝐾𝐴𝐴𝐺𝐺𝑇𝑇2 + 𝐾𝐾𝐵𝐵𝑁𝑁0𝑇𝑇𝐺𝐺2 

 

𝑁𝑁1
𝑁𝑁0
− 1 = −𝐾𝐾𝐴𝐴𝐺𝐺𝑁𝑁0

𝑇𝑇2 + 𝐾𝐾𝐵𝐵𝑇𝑇𝐺𝐺2 

 

𝑁𝑁1
𝑁𝑁0
= −𝐾𝐾𝐴𝐴𝐺𝐺𝑁𝑁0

𝑇𝑇2 + 𝐾𝐾𝐵𝐵𝐺𝐺2𝑇𝑇 + 1 

 

 

 

Dividing the previous equation by N0, results:

          

 

𝑁𝑁1
𝑁𝑁0
= 𝐾𝐾𝐵𝐵𝐾𝐾𝐴𝐴

𝐺𝐺 + (1 − 𝐾𝐾𝐵𝐵𝐾𝐾𝐴𝐴
𝐺𝐺) 𝑒𝑒−𝐾𝐾𝐴𝐴𝐺𝐺𝐺𝐺 

 

𝐺𝐺 = √
𝜑𝜑𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀
𝜇𝜇 = √

𝑔𝑔. ℎ𝑓𝑓
𝜈𝜈. 𝑇𝑇  

 

𝑛𝑛0
𝑛𝑛1
=
(1 + 𝐾𝐾𝐴𝐴𝐺𝐺𝑇𝑇)
(1 + 𝐾𝐾𝐵𝐵𝐺𝐺2𝑇𝑇)

 

 

𝑁𝑁0
𝑁𝑁1
=
(1 + 𝐾𝐾𝐴𝐴𝐺𝐺𝑇𝑇)
(1 + 𝐾𝐾𝐵𝐵𝐺𝐺2𝑇𝑇)

 

 

𝑁𝑁1
𝑁𝑁0
=
(1 + 𝐾𝐾𝐵𝐵𝐺𝐺2𝑇𝑇)
(1 + 𝐾𝐾𝐴𝐴𝐺𝐺𝑇𝑇)

 

 

𝑑𝑑𝑁𝑁1
𝑑𝑑𝑇𝑇 = −𝐾𝐾𝐴𝐴𝐺𝐺𝑁𝑁1⏟    

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑀𝑀𝐴𝐴𝑀𝑀𝐴𝐴𝐴𝐴𝐴𝐴𝑀𝑀 𝐺𝐺𝑀𝑀𝐴𝐴𝑇𝑇
+ 𝐾𝐾𝐵𝐵𝑁𝑁0𝐺𝐺2⏟    
𝐵𝐵𝐴𝐴𝑀𝑀𝑀𝑀𝐵𝐵𝐵𝐵𝐵𝐵 𝐺𝐺𝑀𝑀𝐴𝐴𝑇𝑇

 

 

𝑑𝑑𝑁𝑁1
𝑑𝑑𝑇𝑇 = −𝐾𝐾𝐴𝐴𝐺𝐺𝑇𝑇⏟    

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑀𝑀𝐴𝐴𝑀𝑀𝐴𝐴𝐴𝐴𝐴𝐴𝑀𝑀 𝐺𝐺𝑀𝑀𝐴𝐴𝑇𝑇
+ 𝐾𝐾𝐵𝐵𝑁𝑁0𝐺𝐺2⏟    
𝐵𝐵𝐴𝐴𝑀𝑀𝑀𝑀𝐵𝐵𝐵𝐵𝐵𝐵 𝐺𝐺𝑀𝑀𝐴𝐴𝑇𝑇

 

 

𝑁𝑁1 − 𝑁𝑁0
𝑇𝑇 = −𝐾𝐾𝐴𝐴𝐺𝐺𝑇𝑇 + 𝐾𝐾𝐵𝐵𝑁𝑁0𝐺𝐺2 

𝑁𝑁1 − 𝑁𝑁0 = −𝐾𝐾𝐴𝐴𝐺𝐺𝑇𝑇2 + 𝐾𝐾𝐵𝐵𝑁𝑁0𝑇𝑇𝐺𝐺2 

 

𝑁𝑁1
𝑁𝑁0
− 1 = −𝐾𝐾𝐴𝐴𝐺𝐺𝑁𝑁0

𝑇𝑇2 + 𝐾𝐾𝐵𝐵𝑇𝑇𝐺𝐺2 

 

𝑁𝑁1
𝑁𝑁0
= −𝐾𝐾𝐴𝐴𝐺𝐺𝑁𝑁0

𝑇𝑇2 + 𝐾𝐾𝐵𝐵𝐺𝐺2𝑇𝑇 + 1 

 

 

 

Isolating N1/N0, results:

     

 

𝑁𝑁1
𝑁𝑁0
= 𝐾𝐾𝐵𝐵𝐾𝐾𝐴𝐴

𝐺𝐺 + (1 − 𝐾𝐾𝐵𝐵𝐾𝐾𝐴𝐴
𝐺𝐺) 𝑒𝑒−𝐾𝐾𝐴𝐴𝐺𝐺𝐺𝐺 

 

𝐺𝐺 = √
𝜑𝜑𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀
𝜇𝜇 = √

𝑔𝑔. ℎ𝑓𝑓
𝜈𝜈. 𝑇𝑇  

 

𝑛𝑛0
𝑛𝑛1
=
(1 + 𝐾𝐾𝐴𝐴𝐺𝐺𝑇𝑇)
(1 + 𝐾𝐾𝐵𝐵𝐺𝐺2𝑇𝑇)

 

 

𝑁𝑁0
𝑁𝑁1
=
(1 + 𝐾𝐾𝐴𝐴𝐺𝐺𝑇𝑇)
(1 + 𝐾𝐾𝐵𝐵𝐺𝐺2𝑇𝑇)

 

 

𝑁𝑁1
𝑁𝑁0
=
(1 + 𝐾𝐾𝐵𝐵𝐺𝐺2𝑇𝑇)
(1 + 𝐾𝐾𝐴𝐴𝐺𝐺𝑇𝑇)

 

 

𝑑𝑑𝑁𝑁1
𝑑𝑑𝑇𝑇 = −𝐾𝐾𝐴𝐴𝐺𝐺𝑁𝑁1⏟    

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑀𝑀𝐴𝐴𝑀𝑀𝐴𝐴𝐴𝐴𝐴𝐴𝑀𝑀 𝐺𝐺𝑀𝑀𝐴𝐴𝑇𝑇
+ 𝐾𝐾𝐵𝐵𝑁𝑁0𝐺𝐺2⏟    
𝐵𝐵𝐴𝐴𝑀𝑀𝑀𝑀𝐵𝐵𝐵𝐵𝐵𝐵 𝐺𝐺𝑀𝑀𝐴𝐴𝑇𝑇

 

 

𝑑𝑑𝑁𝑁1
𝑑𝑑𝑇𝑇 = −𝐾𝐾𝐴𝐴𝐺𝐺𝑇𝑇⏟    

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑀𝑀𝐴𝐴𝑀𝑀𝐴𝐴𝐴𝐴𝐴𝐴𝑀𝑀 𝐺𝐺𝑀𝑀𝐴𝐴𝑇𝑇
+ 𝐾𝐾𝐵𝐵𝑁𝑁0𝐺𝐺2⏟    
𝐵𝐵𝐴𝐴𝑀𝑀𝑀𝑀𝐵𝐵𝐵𝐵𝐵𝐵 𝐺𝐺𝑀𝑀𝐴𝐴𝑇𝑇

 

 

𝑁𝑁1 − 𝑁𝑁0
𝑇𝑇 = −𝐾𝐾𝐴𝐴𝐺𝐺𝑇𝑇 + 𝐾𝐾𝐵𝐵𝑁𝑁0𝐺𝐺2 

𝑁𝑁1 − 𝑁𝑁0 = −𝐾𝐾𝐴𝐴𝐺𝐺𝑇𝑇2 + 𝐾𝐾𝐵𝐵𝑁𝑁0𝑇𝑇𝐺𝐺2 

 

𝑁𝑁1
𝑁𝑁0
− 1 = −𝐾𝐾𝐴𝐴𝐺𝐺𝑁𝑁0

𝑇𝑇2 + 𝐾𝐾𝐵𝐵𝑇𝑇𝐺𝐺2 

 

𝑁𝑁1
𝑁𝑁0
= −𝐾𝐾𝐴𝐴𝐺𝐺𝑁𝑁0

𝑇𝑇2 + 𝐾𝐾𝐵𝐵𝐺𝐺2𝑇𝑇 + 1 

 

 

 

 (20)

Equation 20 allows us to determine turbidity removal in a 
flocculation unit (N1/N0) as a function of KA and KB constants, 
the root mean square of the unit’s velocity gradient (G) and 
retention time (T). 

TABle 2
Main geometrical characteristics of the settling tank

Geometrical parameter Value

Reactor volume 3.76 L
Baffle length 40 cm
Reactor height 15 cm
Inlet weir height 10 cm
Outlet weir height 8 cm
Number of baffles 3
Baffle width 3.3 cm

https://doi.org/10.4314/wsa.v45i1.01
http://www.wrc.org.za
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Model coefficient calculation (model calibration aspects)

The determination of constants KA and KB of Bratby et al. (1977)’s 
model – Eq. 13 – was performed with two samples for each 
combination of arrangement and flow rate, according to the 
method described in Brito (1998). The first step of this method 
consists of applying the values of maximum efficiency (at the 
lower retention time) in the derivative of Eq. 13, making dN1/dt = 
0, and obtaining KB/KA. After that, a second point was necessary 
to obtain both separately; to standardize the calibration process, 
the first HCTF for each arrangement was chosen. 

The determination of constants KA and KB of Argaman 
(1968) and Argaman and Kaufman’s (1970) model – Eq. 17 
– and of the proposed model – Eq. 20 – was performed from 
overestimate least squares method application to the samples 
(Verhaegen and Verdult, 2007). Rearranging the terms of Eqs 
17 and 20 as a function of constants KA and KB, results in Eqs 21 
and 22, respectively:

  

       

 

(𝑁𝑁1 𝑁𝑁0⁄ )(1 + 𝐾𝐾𝐴𝐴𝐺𝐺𝐺𝐺) = (1 + 𝐾𝐾𝐵𝐵𝐺𝐺2𝐺𝐺) 

[(𝑁𝑁1 𝑁𝑁0⁄ ) + (𝑁𝑁1 𝑁𝑁0⁄ )𝐾𝐾𝐴𝐴𝐺𝐺𝐺𝐺] = 1 + 𝐾𝐾𝐵𝐵𝐺𝐺2𝐺𝐺 

(𝑁𝑁1 𝑁𝑁0⁄ )𝐺𝐺𝐺𝐺𝐾𝐾𝐴𝐴 − 𝐺𝐺2𝐺𝐺𝐾𝐾𝐵𝐵 = 1 − (𝑁𝑁1 𝑁𝑁0⁄ ) 

 

𝐺𝐺
𝑁𝑁0
𝐺𝐺2𝐾𝐾𝐴𝐴 − 𝐺𝐺2𝐺𝐺𝐾𝐾𝐵𝐵 = 1 − (𝑁𝑁1 𝑁𝑁0⁄ ) 

 

[
 
 
 
 
 
 
 𝑁𝑁1𝑁𝑁0

(1)𝐺𝐺(1)𝐺𝐺(1) −𝐺𝐺(1)2𝐺𝐺(1)
𝑁𝑁1
𝑁𝑁0
(2)𝐺𝐺(2)𝐺𝐺(2) −𝐺𝐺(2)2𝐺𝐺(2)

⋮ ⋮
𝑁𝑁1
𝑁𝑁0
(𝑚𝑚)𝐺𝐺(𝑚𝑚)𝐺𝐺(𝑚𝑚) −𝐺𝐺(𝑚𝑚)2𝐺𝐺(𝑚𝑚)]

 
 
 
 
 
 
 

⏟                        
𝐴𝐴 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀

[𝐾𝐾𝐴𝐴𝐾𝐾𝐵𝐵]⏟
𝐾𝐾 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀

=

[
 
 
 
 
 
 
 1 − 𝑁𝑁1𝑁𝑁0

(1)

1 − 𝑁𝑁1𝑁𝑁0
(2)

⋮
1 − 𝑁𝑁1𝑁𝑁0

(𝑚𝑚)]
 
 
 
 
 
 
 

⏟        
𝐵𝐵 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀

 

 

[
 
 
 
 
 
 
 𝐺𝐺𝑁𝑁0

(1)𝐺𝐺(1)2 −𝐺𝐺(1)2𝐺𝐺(1)
𝐺𝐺
𝑁𝑁0
(2)𝐺𝐺(2)2 −𝐺𝐺(2)2𝐺𝐺(2)
⋮ ⋮

𝐺𝐺
𝑁𝑁0
(𝑚𝑚)𝐺𝐺(𝑚𝑚)2 −𝐺𝐺(𝑚𝑚)2𝐺𝐺(𝑚𝑚)]

 
 
 
 
 
 
 

⏟                    
𝐴𝐴 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀

[𝐾𝐾𝐴𝐴𝐾𝐾𝐵𝐵]⏟
𝐾𝐾 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀

=

[
 
 
 
 
 
 
 1 − 𝑁𝑁1𝑁𝑁0

(1)

1 − 𝑁𝑁1𝑁𝑁0
(2)

⋮
1 − 𝑁𝑁1𝑁𝑁0

(𝑚𝑚)]
 
 
 
 
 
 
 

⏟        
𝐵𝐵 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀

 

 

𝐾𝐾 = (𝐴𝐴′𝐴𝐴)−1𝐴𝐴′𝐵𝐵 

 

 

 

 (21)

   

             

 

(𝑁𝑁1 𝑁𝑁0⁄ )(1 + 𝐾𝐾𝐴𝐴𝐺𝐺𝐺𝐺) = (1 + 𝐾𝐾𝐵𝐵𝐺𝐺2𝐺𝐺) 

[(𝑁𝑁1 𝑁𝑁0⁄ ) + (𝑁𝑁1 𝑁𝑁0⁄ )𝐾𝐾𝐴𝐴𝐺𝐺𝐺𝐺] = 1 + 𝐾𝐾𝐵𝐵𝐺𝐺2𝐺𝐺 

(𝑁𝑁1 𝑁𝑁0⁄ )𝐺𝐺𝐺𝐺𝐾𝐾𝐴𝐴 − 𝐺𝐺2𝐺𝐺𝐾𝐾𝐵𝐵 = 1 − (𝑁𝑁1 𝑁𝑁0⁄ ) 

 

𝐺𝐺
𝑁𝑁0
𝐺𝐺2𝐾𝐾𝐴𝐴 − 𝐺𝐺2𝐺𝐺𝐾𝐾𝐵𝐵 = 1 − (𝑁𝑁1 𝑁𝑁0⁄ ) 

 

[
 
 
 
 
 
 
 𝑁𝑁1𝑁𝑁0

(1)𝐺𝐺(1)𝐺𝐺(1) −𝐺𝐺(1)2𝐺𝐺(1)
𝑁𝑁1
𝑁𝑁0
(2)𝐺𝐺(2)𝐺𝐺(2) −𝐺𝐺(2)2𝐺𝐺(2)

⋮ ⋮
𝑁𝑁1
𝑁𝑁0
(𝑚𝑚)𝐺𝐺(𝑚𝑚)𝐺𝐺(𝑚𝑚) −𝐺𝐺(𝑚𝑚)2𝐺𝐺(𝑚𝑚)]

 
 
 
 
 
 
 

⏟                        
𝐴𝐴 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀

[𝐾𝐾𝐴𝐴𝐾𝐾𝐵𝐵]⏟
𝐾𝐾 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀

=

[
 
 
 
 
 
 
 1 − 𝑁𝑁1𝑁𝑁0

(1)

1 − 𝑁𝑁1𝑁𝑁0
(2)

⋮
1 − 𝑁𝑁1𝑁𝑁0

(𝑚𝑚)]
 
 
 
 
 
 
 

⏟        
𝐵𝐵 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀

 

 

[
 
 
 
 
 
 
 𝐺𝐺𝑁𝑁0

(1)𝐺𝐺(1)2 −𝐺𝐺(1)2𝐺𝐺(1)
𝐺𝐺
𝑁𝑁0
(2)𝐺𝐺(2)2 −𝐺𝐺(2)2𝐺𝐺(2)
⋮ ⋮

𝐺𝐺
𝑁𝑁0
(𝑚𝑚)𝐺𝐺(𝑚𝑚)2 −𝐺𝐺(𝑚𝑚)2𝐺𝐺(𝑚𝑚)]

 
 
 
 
 
 
 

⏟                    
𝐴𝐴 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀

[𝐾𝐾𝐴𝐴𝐾𝐾𝐵𝐵]⏟
𝐾𝐾 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀

=

[
 
 
 
 
 
 
 1 − 𝑁𝑁1𝑁𝑁0

(1)

1 − 𝑁𝑁1𝑁𝑁0
(2)

⋮
1 − 𝑁𝑁1𝑁𝑁0

(𝑚𝑚)]
 
 
 
 
 
 
 

⏟        
𝐵𝐵 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀

 

 

𝐾𝐾 = (𝐴𝐴′𝐴𝐴)−1𝐴𝐴′𝐵𝐵 

 

 

 

 (22)

Equations 21 and 22 can be expressed in a matrix form, 
considering the samples available for each arrangement 
(Table 1), resulting in a linear system shown in Eqs 23 and 24, 
respectively. The general solution of a linear system is given by 
Eq. 25.

 

(𝑁𝑁1 𝑁𝑁0⁄ )(1 + 𝐾𝐾𝐴𝐴𝐺𝐺𝐺𝐺) = (1 + 𝐾𝐾𝐵𝐵𝐺𝐺2𝐺𝐺) 

[(𝑁𝑁1 𝑁𝑁0⁄ ) + (𝑁𝑁1 𝑁𝑁0⁄ )𝐾𝐾𝐴𝐴𝐺𝐺𝐺𝐺] = 1 + 𝐾𝐾𝐵𝐵𝐺𝐺2𝐺𝐺 

(𝑁𝑁1 𝑁𝑁0⁄ )𝐺𝐺𝐺𝐺𝐾𝐾𝐴𝐴 − 𝐺𝐺2𝐺𝐺𝐾𝐾𝐵𝐵 = 1 − (𝑁𝑁1 𝑁𝑁0⁄ ) 

 

𝐺𝐺
𝑁𝑁0
𝐺𝐺2𝐾𝐾𝐴𝐴 − 𝐺𝐺2𝐺𝐺𝐾𝐾𝐵𝐵 = 1 − (𝑁𝑁1 𝑁𝑁0⁄ ) 

 

[
 
 
 
 
 
 
 𝑁𝑁1𝑁𝑁0

(1)𝐺𝐺(1)𝐺𝐺(1) −𝐺𝐺(1)2𝐺𝐺(1)
𝑁𝑁1
𝑁𝑁0
(2)𝐺𝐺(2)𝐺𝐺(2) −𝐺𝐺(2)2𝐺𝐺(2)

⋮ ⋮
𝑁𝑁1
𝑁𝑁0
(𝑚𝑚)𝐺𝐺(𝑚𝑚)𝐺𝐺(𝑚𝑚) −𝐺𝐺(𝑚𝑚)2𝐺𝐺(𝑚𝑚)]

 
 
 
 
 
 
 

⏟                        
𝐴𝐴 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀

[𝐾𝐾𝐴𝐴𝐾𝐾𝐵𝐵]⏟
𝐾𝐾 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀

=

[
 
 
 
 
 
 
 1 − 𝑁𝑁1𝑁𝑁0

(1)

1 − 𝑁𝑁1𝑁𝑁0
(2)

⋮
1 − 𝑁𝑁1𝑁𝑁0

(𝑚𝑚)]
 
 
 
 
 
 
 

⏟        
𝐵𝐵 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀

 

 

[
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 (25)

The obtainment of KA and KB constants to Argaman (1968) 
and Argaman and Kaufman’s (1970) model – Eq. 17 – was 
performed with 2 samples for each combination of arrangement 
and flow rate. The number of samples was defined to guarantee 
the convergence of the method with the same number of 
samples for all arrangements. The obtainment of KA and KB 
constants for the proposed model – Eq. 20 – was performed 

with all samples available for each combination of arrangement 
and flow rate. Samples used in each case are shown in Table 3. 
In all cases, MATLAB R2012b was used to fit the models.

Numerical results

Maximum and average absolute percentage deviation values, 
obtained between experimental data and Argaman (1968) 
and Argaman and Kaufman (1970) model, Bratby et al. (1977) 
model and the model proposed in this study, are shown in 
Table 4. Figures 5 and 6 show the relationship between N1/N0 
(representing the turbidity removal) and retention time for each 
combination of arrangement and flow rate described in Table 1, 
comparing Argaman (1968) and Argaman and Kaufman’s 
(1970) model with the proposed model (Fig. 5) and the model of 
Bratby et al. (1977) model with the proposed model (Fig. 6).

From Fig. 5, Fig. 6 and Table 4 it is possible to verify 
that the model proposed in this study presents results more 
adherent to the physical process, when compared with 
Argaman (1968) and Argaman and Kaufman’s (1970)’s model 
and that of Bratby et al. (1977), for all arrangements/flow 
rates. In the best case (Arrangement II – 1 L·min−1), maximum 
and average absolute percentage deviations obtained using 
the model proposed in this study were 1.4% and 0.4%, 
respectively. The major difference occurred with Arrangement 
III – 4 L·min−1, whose maximum and average absolute 
percentage deviations obtained using the model proposed 
in this study were 9.5% and 6.1%, respectively. Maximum 
and average absolute percentage deviations obtained using 
the model proposed in this study were less than or equal to 
10% (experimental uncertainty, described in ‘Materials and 
Methods’) for all cases. However, maximum and average 
absolute percentage deviations obtained using Argaman 
(1968) and Argaman and Kaufman’s (1970) model reach 32.9% 
and 19.6%, respectively (Arrangement I – 2 L·min−1). With the 
model of Bratby et al. (1977), maximum and average absolute 
percentage deviations reach 155.6% and 36.7%, respectively 
(Arrangement I – 1 L·min−1). Values of the determination 
coefficient were increased, varying between 0.76 and 0.99 
using the model proposed in this study. With Argaman (1968) 
and Argaman and Kaufman’s (1970) model, values of the 
determination coefficient varied between 0.19 and 0.70. With 
the model of Bratby et al. (1977), values of the determination 
coefficient varied between 0.16 and 0.77. Furthermore, two 
parameters were used to measure the quality of the model: 

TABle 3
Samples used to calibrate Argaman (1968) and Argaman and 

Kaufman’s (1970) model, Bratby et al. (1977) model and the 
model proposed in this study

Arrangement Flow 
Rate

Samples used to 
calibrate Argaman 

(1968) and Argaman 
and Kaufman (1970) 

model, and Bratby et 
al. (1977)’s model

Samples used 
to calibrate 

model 
proposed in 

this work

I
1 L·min−1 1 and 2

All samples

2 L·min−1 1 and 2

II
1 L·min−1 1 and 5
2 L·min−1 1 and 4

III
2 L·min−1 1 and 5
4 L·min−1 1 and 4
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sum of squared errors (SSE) and root mean square error 
(RMSE). The values of these parameters decreased when the 
model proposed in this study is compared with the other’s 
evaluated models. Additionally, the asymptotic characteristic 
observed in Argaman (1968) and Argaman and Kaufman’s 
(1970) model (Fig. 5) and the model of Bratby et al. (1977) (Fig. 
6), differs significantly from the decreasing-rising behaviour 
experimentally verified. This fact does not occur with the 
model proposed in this study, which presents a decreasing-
rising behaviour, like that of the experimental data.

In the end, it is important to emphasize that dynamic 
similarity studies are necessary to allow the application of 
HCTFs at real-world large scale. This is necessary since the 
experiments performed in this work used prototypes, with low 
flow rate values.

CONCLUSIONS

This paper began by exploring the main mathematical models 
for orthokinetic interactions proposed in the literature. In 
the performed review, most of the presented models do not 
appropriately consider the influence of retention time in 

flocculation processes, with this assumption valid only for 
units with high retention times. Thus, this paper proposed a 
new flocculation model, adherent to flocculation units with low 
retention times, and able to appropriately consider the influence 
of retention time in the flocculation process.

Among several f locculation units with low retention 
time, HCTFs have been gaining prominence in scientific 
research, due to their compact size, low cost, and high 
efficiency. Based on these characteristics, HCTFs were used 
in this study as a proof f locculation unit to calibrate/validate 
the proposed model.

In the proposed model, a substitution of the term referring 
to the number of flocs previously existing in the flocculation 
unit for the term referring to the time was performed, being 
relevant in flocculation units with low retention time. 

The model proposed in this study presented results more 
adherent to the physical process (using 24 HCTFs with 2 
flow rates, totalling 48 configurations), when compared with 
commonly used models, for all arrangements/flow rates. In 
the best case, maximum and average absolute percentage 
deviations obtained using the model proposed were 1.4% 
and 0.4%, respectively. The major differences were 9.5% and 

TABle 4
Maximum and average absolute percentage deviations obtained between experimental data and Argaman (1968) and Argaman 

and Kaufman’s (1970) model, the model of Bratby et al. (1977) and the model proposed in this study

Argaman (1968) 
and Argaman 
and Kaufman 
(1970) model

Arrangement Flow rate
Absolute percentage deviation between models and experimental data

Maximum Average R² SSe* RMSe**

I
1 L·min−1 26.2% 13.3% 0.31 7.90 × 10-03 3.14 × 10-02

2 L·min−1 32.9% 19.6% 0.30 2.53 × 10-02 5.62 × 10-02

II
1 L·min−1 13.3% 3.2% 0.54 7.57 × 10-04 9.70 × 10-03

2 L·min−1 23.3% 7.2% 0.22 4.00 × 10-03 2.24 × 10-02

III
2 L·min−1 21.5% 9.6% 0.19 4.50 × 10-03 2.38 × 10-02

4 L·min−1 24.9% 12.5% 0.70 9.10 × 10-03 3.36 × 10-02

Bratby et al. 
(1977) model

Arrangement Flow Rate
Absolute percentage deviation between models and experimental data

Maximum Average R² SSe RMSe

I
1 L·min−1 155.6% 36.7% 0.16 8.14 × 10-02 1.01 × 10-01

2 L·min−1 142.6% 40.2% 0.20 1.26 × 10-01 1.26 × 10-01

II
1 L·min−1 79.2% 14.1% 0.63 2.45 × 10-02 5.54 × 10-02

2 L·min−1 78.2% 17.6% 0.35 3.33 × 10-02 6.45 × 10-02

III
2 L·min−1 103.9% 22.7% 0.25 5.25 × 10-02 8.10 × 10-02

4 L·min−1 77.3% 21.2% 0.77 5.15 × 10-02 8.02 × 10-02

Model proposed 
in this study

Arrangement Flow Rate
Absolute percentage deviation between models and experimental data

Maximum Average R² SSe RMSe

I
1 L·min−1 4.9% 2.3% 0.89 1.78 × 10-04 4.70 × 10-03

2 L·min−1 7.8% 3.8% 0.76 7.77 × 10-04 9.90 × 10-03

II
1 L·min−1 1.4% 0.4% 0.99 8.49 × 10-06 1.00 × 10-03

2 L·min−1 3.2% 1.3% 0.97 7.71 × 10-05 3.10 × 10-03

III
2 L·min−1 8.3% 2.5% 0.78 2.92 × 10-04 6.00 × 10-03

4 L·min−1 9.5% 6.1% 0.81 1.40 × 10-03 1.35 × 10-02

* Sum of squared errors
** Root mean square error
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6.1%, respectively, lower than the experimental uncertainty. 
Maximum and average absolute percentage deviations 
obtained with reference models reach 155.6% and 36.7%, 
respectively.

Furthermore, the asymptotic characteristic observed in 
the reference models differs significantly from the decreasing-
rising behaviour experimentally verified. This fact does not 
occur with the model proposed in this study, which presents a 
decreasing-rising behaviour, like the experimental data.
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Figure 5
Relationship between N1/N0 and retention time for each combination of arrangement and flow rate described in Table 1 – Argaman (1968)  

and Argaman and Kaufman’s (1970) model versus proposed model
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list of symbols

B Constant related to flocs breakup (Eq. 7) 

g Gravitational acceleration 

G Root mean square value of unit’s velocity gradient

hf Head loss

Hij Number of contacts between particle with radius Ri and Rj per time unit

KA Constant related to particles and flocs aggregation (Eqs 9–20)

KB Constant related to flocs breakup (Eqs 9–20)

KS, K2 and KP Model constants (Eqs 7–11)

nF Number of flocs per volume unit

ni, nj and nk Number of particles i, j and k per volume unit

n0 Primary particles concentration at t = 0

n1 Primary particles concentration at t

N0 Initial turbidity

N1 Final turbidity

q Flow in the collision sphere

R1 Primary particle’s radius

RF Flocs’ radius

Rij = Ri + Rj Interaction radius between two particles: distance between particles i and j’s centres

Rik = Ri + Rk Interaction radius between two particles: distance between particles i and k’s centres

Ri , Rj and Rk Radius of particles i, j and k

T Retention time 

(u²)average Mean square velocity fluctuations

dv/dz Velocity gradient

δ Probability density function of flocs’ size

ν Kinematic viscosity of the fluid

µ Dynamic viscosity of the fluid

∝ Fraction of collisions that results in flocs

ϕMean Mean value of viscous energy dissipation

φ Flocs’ volume fraction
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